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THE USE OF THE METHOD OF LEAST SQUARES IN CALIBRATION

by

J. M. Cameron

1 . Introduction

When more than one measurement is made on the same quantity, we are
accustomed to taking an average and we have the feeling that the result
is "better" than any single value that might be chosen from the set.

Exactly why the average should be better needs some justification and

the fundamental step toward a general approach to the problem of

measurement was taken by Thomas Simpson in 1755. In showing the
advantage of taking an average of values arising from a number of
probability distributions, "he took the bold step of regarding errors,
not as individual unrelated happenings, but as properties of the
measurement process itself ... He thus opened the way to a

mathematical theory of measurement based on the mathematical theory
of probability" [3, page 29].

The taking of an average is a special case of the method of least
squares for which the original justification by Lengendre in 1805 did
not involve any probability considerations but was advanced as a con-
venient method for the combination of observations. It was Gauss who
recognized that one could not arrive at a "best" value unless the
probability distribution of the measurement errors were known. In

1798 he showed the optimal ity of the least squares values when the
underlying distribution is normal and in 1821 showed that the method
of least squares leads to values of the parameters which have minimum
variance among all possible unbiased linear functions^ of the observa-
tions regardless of the underlying distribution. It is this property
that gives the method of least squares its position of dominance
among methods of combination of observations.

In this paper the statistical concepts needed for the method of
least squares will be stated as a prelude to the usual modern version
of the Gauss theorem. The formation of the observational equations
and the derivation of the normal equations are illustrated for several
situations arising in calibration. The role of restraints in the
solution of systems which are not of full rank is discussed. The
results are presented in a form designed to facilitate computation.

*An example of a nonlinear function with smaller variance than the
average (the "best" linear estimator) is given by the midrange for
the rectangular distribution. The midrange (average of the largest
and smallest observation) has variance 1/[2(N+1 ) (N+2)] when based
on n measurements, whereas the average has variance 1/12N. Thus if
N>3, the midrange is to be preferred.
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2. The Physical and Statistical Model of an Experiment

In physics, one is familiar with the construction and interpretation

of the physical model of an experiment. One has a substantial body of

theory on which to base such a model and one need only consider the

determination of length by interferometric measurements to remind

oneself of the various elements involved: a defined unit, the apparatus,

the procedure, the corrections for environmental factors, etc. One

realization of the experiment leads to values for the quantities of

interest.

But one realizes that a repetition of the experiment will lead to

different values--differences for which the physical model does not

provide corrections. One is thus confronted with the need for a

statistical model to account for the variations encountered in a sequence

of measurements. In building the statistical model, one is first faced

with the issue of what is meant by a repetition of the experiment--many

readings within a few minutes or ab lYiitio determinations a week apart.

The objective is to describe the output of the physical process

not only in terms of the physical quantities involved but also in terms

of the random variation and systematic influences due to environmental,

procedural, or instrumental factors in the experiment.

3. Equation of Expected Values of the Observation

If one measured the same quantity again and again to obtain the

sequence

yi.y2.- . . • •
•

then if the process that generates these numbers is "in control," the
long run average or tiMitlnQ mean, will exist. By "in control" one
means that the values of y behave as random variables from a probability
distribution (for a discussion of this topic, see Eisenhart [1]). This
limiting mean, y, is usually called the expected vatini of y designated
by the operator E( ) so that the statement becomes in symbols E(y) = y.

Because y is regarded as a random variable one can represent it as

y = y + e

where e is the random component that follows some probability distri-
bution with a limiting mean of zero, i.e., E(e) = 0.

The quantity y may involve one or more parameters. Consider the
measurement of the difference in length of all distinct pairings of
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four gage blocks. A, B, C, D. Denote the 6 measurements by y]

,

then one may write
y6>

E(yJ = A-B

ECy?)
c

= A-C

E(yo) = A-D

E(y4) = B-C

ECy^) = B-D

ECyg) = C-D

Other representations are useful.

Observation Expected Value: E(y)

^1

H

H

A - B

A - C

A - D

B - C

B - D

C - D

Matrix Form: Xg

1-10 0

10-10
10 0-1

0 1-10
0 10-1
0 0 1-1

A

B

C

D

Consider a sequence of measurements of the same quantity in the
presence of a linear drift of A per observation. The expected values
are thus:

Observation

^{^) = y

E(y2) = y + A

E(y3) = y + 2A

E(y^) = y + (n-l)A

Matrix Form: _X

3

y

1 (n-1)
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There is an alternative representation that measures the drift from

the central point of the experiment so that the drift is represented

by . . . -3A, -2A, -A, 0, A, 2A, 3A . . . for an odd number of obser-

vations and by . . . ^SA, ::3A, j^A, A, 3A. 5A . . . for an even number

of observations. 2 2 2 2 2 2

If, as for example with some gage blocks, the value changes approxi-

mately linearly with time; then one can represent the observation as

follows:

Expected Value E(y)

E(y^) = a + 3x^

E(y2) = a + 3X2

Matrix Form: Xg

1 X, a

1 Xo B

E(y,) = a . 3x„

The sequence of measurements for the intercomparison of 4 gage

blocks is as follows:

Observation Matrix Form: X3

s. - S.. - 7A/2 1 -1 0 0 -f "
S.

'

Y - S. - 5A/2 -1 0 0 1 -5 S..

X - Y - 3A/2 0 0 1 -1 -3 X

S..- X - A/2 0 1 -1 0 -1 Y

S..- Y + A/2 0 1 0 -1 1 A/2

Y - S. + 3A/

2

-1 0 0 1 3

S. - X + 5A/2 1 0 -1 0 5

X - S.. + 7A/2 0 -1 1 0 7
•^8

(Note that for simplicity, A/2 is regarded as the parameter.)
For a detailed analysis of this and related experimental arrangements,
see J. M. Cameron and G. E. Hailes [1]. The notation is that used in

[1] where S. and S.. refer to reference standards and X and Y are the
objects being calibrated.
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If, as often occurs in the intercomparison of electrical standards,

the comparator has a left-right polarity effect, this can be represented

as an additive effect, a, as shown below for the intercomparison of 5

standards.

Observation

^3

^4

^8

^9

^10

Expected Value

A - B

B -

A

-A

EM
+ a

C + a

C - D + a

D - E + a

+ E + a

+ D + a

- D + a

+ E + a

C - E + a

C + a

Matrix Form: Xg

1 -1 0 0 0 1

0 1-10 0 1

0 0 1-10 1

0 0 0 1 -1 1

-1 0 0 0 1 1

-10 0-101
0 10-101
0-10011
0 0 10-11
10-1001

4. Statistical Independence

The sequence of differences from a zero measurement, y^,

A: y^-yQ. y2-yo' ^3-^0- • "V^o" •
•

are clearly dependent because an error in y will be common to all.

Similarly, the successive differences

n 'n-l •

•

will be correlated in pairs because an error in y^ affects both the
(n-l)st and n-th difference.
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If it is assumed in both cases that each y^- has the form = ui +

where E(ei) = 0, Var (ei) = and cov (ei.ej) = 0,then the variance of

the differences for sequence A is, as one would expect,

V(y.-yQ) = 20^

and the covariance of two differences is

cov (y.-yQ, y-yo)
= E[{e.-eQ){e^-eQ)] = E(e^) = 0^

because terms of the form E(e^. ,ej)= 0

For sequence B the variance is also V(yi-yi.i) = 2a^ and the

covariance terms are

covl

ro^ if |i-j| = 1

These variance-covariance relationships can be represented in matrix

form:

Sequence A: V= 2 1 1 ... 1

1 2 1 ... 1

1 1 1 ... 2

0^ Sequence B: V= 2-1 0 0 ... 0

-1 2 -1 0 ... 0

0 0 0 0 ... 2

All are familiar with the phenomenon of much closer agreement among
measurements taken immediately after each other when compared to a sequence
of values taken days or weeks apart. The simplest statistical model for
this case is that each day has its own limiting mean, yi = y + 6i , where

E(6-i) = 0, Var(6i) = a§, Cov(6i,6j) = 0,and the successive values on

each day have the form

y..=y.+e..=y + 6.+e..

where E(eij) = 0, Var(eij) = aj, Cov(e-jj, ei^^) = 0, and Cov(eij, 6|<) = 0.
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These three examples serve to illustrate the point that the physical
conduct of the experiment is the essential element in dictating the
appropriate statistical analysis. In all three cases the correlation among
the variables vitiates the usual formula: standard deviation of the mean =

(l//n) standard deviation. (See Appendix, Section 1(b).)

It is in the physical conduct of the experiment that one has to build
in the independence of the measurements. For Sequence A one could remeasure
the zero setting each time or in Sequence B, make an independent duplicate
measurement. Ordinarily this is too much of an expense to pay to achieve
uncorrelated variables just for a simpler analysis.

Statistical independence is to be desired in the sense that if

the successive measurements are highly correlated, then many measure-
ments are only slightly better than a single one. The really important
issue is that the proper statistical model be used so that the results
are valid.

5. Normal Equations For the Method of Least Squares (independent
random variables)

When there are more observations than parameters, the "best" (in

the sense of minimum variance) linear unbiased estimates for the
parameters are given by the so-called least squares estimators. For
example, assume one has the problem of deriving values for A, B, C,

and D from the following measurements.

Measurements Expected Value:

A

B

C

D

A + B

B + C

C + D

D + A

E(y) Matrix Form: X3

'

1 0 0 0

0 10 0

0 0 10

0 0 0 1

110 0

0 1 1

0 0 1

10 0 1
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An obvious estimator. A, is the average of the three values.

Expected Value

^1
^

y^-y^ (A+B)-B

y8-y4 (A+D)-D

so that, assuming independent measurements with variance, o^,

A = i(yi + y5 - ^2 ^ ^8 - ^4^

Var(A )
=

The least squares estimator is obtained by forming the normal

equations (see Appendix, Section 2).

3A + B + + D = y^ + y^ + yg

A + 3B + C = ^2 ^6 ^5

B + 3C + D = y3 + y7 + yg

A + C +3D = y^ + yg + y^

The solution gives the following estimators for the parameters.

A = (7y^ - 3/2 + 2y3 - 3y4 + 4y5 - y^ - y^ + 4yg)/15

B = (-3y^ + 7y2 - 3y3 + 2)f^ + 4y5 + 4yg - y^ - y8)/15

C = (2y^ - 3y2 + 7y3 - - y^ + 4yg + 4y7 - yg)/15

D = (-3y^ + 2y2 - 3y3 + yy^ - y^ - y^ + H^^^ + 4yg)/15

Using formula (1.11) of Appendix, gives

Var(A) = 105aV225 = 21aV45 = 7aVl5

which can be compared to the variance of A which was 25a^/45. The Gauss
theorem on least squares guarantees that no other linear unbiased
estimator will have smaller variance.
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In matrix form one has

(X'X)B = 3 10 1

13 10

0 13 1

10 13

1 0 0 0 1 0 0 1

0 10 0 110 0

0 0 1 0 0 1 1 0

0 0 0 1 0 0 1 1

15
7-3 2-3

-3 7-3 2

2-3 7-3

-3 2-3 7

1 0 0 0 1 0 0 1

0 10 0 110 0

0 0 1 0 0 1 1 0

0 0 0 1 0 0 1 1

^ " IT
7-3 2-3 4-1-1 4

-3 7-3 2 4 4-1-1

2-3 7-3-1 4 4-1

-32-37-1-144
When only differences among a group of objects (such as gage blocks,

voltage cells, etc.) are measured the normal equation will not be of
full rank so that a unique solution will not exist. For the design
involving differences between all distinct pairings of objects the
normal equations are, for the case of 4 objects discussed in Section 3,

3A - B - C - D =
yi

+ y2 + ^3 = ^1

-A + 3B - C - D = -y^ + + = q2

-A -

-A -

+ 3C - D = -y2 - y^ + yg =
q3

C + 3D = -y.
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Or in matrix form:

X'X3 = 1110 0 0

-10 0 110
0-1 0-1 0 1

0 0-1 0-1-1

6 = 3 -1 -1 -1

-1 3 -1 -1

-1 -1 3 -1

-1 -1 -1 3

3 = 1110 0 0

-10 0 110
0-10-101
0 0-1 0-1-1

1-10 0

10-10
10 0-1

0 1-10

0 10-1

0 0 1-1

which can be seen not to be of full rank because the sum of the four
equations is zero.

One needs a baseline to which the differences can be referred--a
restraint to bring the system of equations up to full rank. If one of
the objects were designated as the standard, or if a number (or all)
of them were regarded as a reference group whose value was known, values
for the items could be obtained.

If the restraint A = Kq is invoked, the normal equations become
(using the methods of Appendix, Section 3)

3A B C - D + X = q

-A + 3B - C - D

-A - B + 3C - D

-A - B - C + 3D

The solution is given by

A = K

B = K+(-2y^-y2-y3+y4+y5)/4

C = K+(-y^-2y2-y3-y4+yg)/4

6 - Kf(-y^-y2-2y3-y3-yg)/4

A = 0

^ ^2

= ^3

= ^4

= K

3 -1 -1 -1 1

-1 3 -1 -1 0

-1 -1 3 -1 0

-1 -1 -1 3 0

1 0 0 0 0

3 X'y

X K
0

"o 0 0 0 4 1 1 1 0 0 0 0

0 2 1 1 4 -1 0 0 1 1 0 0

0 1 2 1 4 0 -1 0 -1 0 1 0

0 1 1 2 4 0 0 -1 0 -1 -1 0

4 4 4 4 0 0 0 0 0 0 0 1
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1 0000004
-2-1-1 1 1 0 4

-1 -2-1-1 0 14

-1 -1 -2 0-1-14

0 0 0 0 0 0 0

The variances of the values are V(A) = 0; V(B) = V(C) = V(D) = aV2.

If the restraint A+B+C+D=K] is invoked, the normal equations
become

3A - B - C - D + A =
q-|

-A + 3B - C - D + A =
q2

-A - B + 3C - D + A = q.

-A - B - C + 3D + A = q.

A + B + C + D = K.

B X'y

A
—I

11110
and the solution is given by

A = (y^+y2+y3+K^)/4 3
- 1

16
3 -1 -1 -1 4 1 1 1 0 0 0 0

B = (-y^+y4+y5+K^)/4 A -1 3 -1 -1 4 -1 0 0 1 1 0 0

c = (-y2-y4+y6+Ki)/4 -1 -1 3 -1 4 0 -1 0 -1 0 1 0

3= (-y3-y5-y6+K^)/4 -1 -1 -1 3 4 0 0 -1 0 -1 -1 0

A = 0 4 4 4 4 0 0 0 0 0 0 0 1

16

y

4 4 4 0 0 0 4

-4 0 0 4 4 0 4

0 -4 0 -4 0 4 4

0 0 -4 0 -4 -4 4

0 0 0 0 0 0 0

The variances of the values are V(A) = V(B) = V(C) = V{D) = 3aVl6.
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Although it is a simple matter to change the reference point for
the parameters (i.e., change the restraint) after one solution has been
found, the corresponding change of variances for the parameter values
should not be ignored. These variances are given by the diagonal terms
of the inverse of the matrix of normal equation, the inverse being
indicated by double brackets in these examples. The difference in

variance for § in the last example, arises from the fact that in the
first case one is concerned only with the difference between A (the
standard) and B, whereas in the second case it is the difference between
B and the average of the others that is involved.

For completeness, the matrices of normal equations and their
inverses for the examples of Section 3 are shown below.

Linear Drift

X =

(n-1)

(X'X)"^ = -rjH

X'X

n(n-l)/2

n(n-l)/2

n(n-l)(2n-l)/6

F(nMT n(n-l)(2n-l)/6 -n(n-l)/2

-n(n-l)/2 n

y a linear function of x

X = 'l x/ X'X = n Zx
nzx^-(zx)^

Zx^ -Zx

1 X2 Zx Zx^ -Zx n

^ ^n

12



Gage block design

X =
1 -1 0 0 -7

-1 0 0 1 -5

0 0 1 -1 -3

0 1 -1 0 -1

0 1 0 -1 1

-1 0 0 1 3

1 0 -1 0 5

0 -1 1 0 7

X'X B

B' 0

4 -1 -1 -2 0 1

-1 4 -2 -1 n 1

-1 -2 4 -1 0 0

-2 -1 -1 4 0 0

0 0 0 0 168 0

1 1 0 0 0 0

X'X B

B' 0

-1 = 1
336

35 -35 -7 7 0 168

-35 35 7 -7 0 168

-7 7 91 21 0 168

7 -7 21 91 0 168

0 0 0 0 2 0

168 168 168 168 0 0

Intercomparison of 5 standards (Sum of all used as restraint)

X =
1 -1 0 0 0 1

0 1 -1 0 0 1

0 0 1 -1 0 1

0 0 0 1 -1 1

-1 0 0 0 1 1

-1 0 0 1 0 1

0 1 0 -1 0 1

0 -1 0 0 1 1

0 0 1 0 -1 1

1 0 -1 0 0 1

X'X B

B' 0

4 -1 -1 -1-1 0 1

-1 4-1-1-1 0 1

-1 -14-1-101
-1 -1-14-101

-1 -1-1-14 0 1

0 0 0 0 0 10 0

111110 0
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X'X B

B' 0

-1

25
4 -1 -1 -1 1

-1 4 -1 -1 -1

-1 -1 4 -1 -1

-1 -1 -1 4 -1

-1 -1 -1 -1 4

0 0 0 0 0

5 5 5 5 5

6. Standard Deviation

By substituting the computed values for the parameters into the

equations of expected values for the observation, one has a pn-tdlttdd

valu^ to compare to the actual observation. The difference, d, between

the observed and predicted value is called the deviation and is used

to determine an estimate, s, of the standard deviation, a, of the

process

s =
n-k+m

where n is the number of measurements, k is the number of parameters and
m is the number of restraints.

Ordinarily one has available a sequence of values of the standard
deviation say si, S2, S3, . . . , s^ based on v] , V2, V3, . . . , degrees
of freedom. One forms the estimate of a by combining these in quadrature

a =

with degrees of freedom N = Zv. In assigning a standard deviation to

the parameters or linear combinations of them, the value a is used rather
than the value of s from a single experiment.

The variance of the sums of two parameter values is given by adding
the corresponding diagonal terms (variances) in the inverse of the
matrix of normal equations and the appropriate off diagonal terms
(covariances) and multiplying by For the case of the intercomparison
of 5 standards given at the end of Section 5:
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s.d. (A+B) = /a^ + 0^ + 2a^g = y^S^^^^I^] = a/6

For the variance of the difference, the covariance terms enter negatively
so that for the same example

s.d.(A-B) = /a^ + a2-2a^3 = -=-/[4+4-2(-l )] = a/10

For other linear combinations, formula 1.10-M of the Appendix would be

used.

For the linear function example, the predicted value of y for

^0 ""^
^o~ ^ ^^^^^ ^ variance of

^0^ ^11 ^12
"1

~

^12 ^22 X
0

where the terms
Section 5 for

s C,-,, Ci2» Cpo ai^e the elements of (X'X)"^ given in

the wse of y as a linear function of x.

7. Correlated Measurements

In the previous section it was assumed that the observations were
uncorrected, i.e., that V(yi) = a^, cov(yi, yj) =0 or in matrix form
V = Var(y) = a^I where I is the identity matrix. Section 4 of the
Appendix discusses the general case where one knows the matrix, V, of
variances and covariances for the observations.

Quite often a transformation of variables can be achieved to obtain
variables that are uncorrelated. A simple example is provided by the
case of cummulative errors, i.e., in the case where

Yl = ^1 + ^1

^2 ^ ^2 ^1 ^2

y3 = y3 + + ^2 ^3

The variance covariance matrix of the y's assuming E(e:i) = 0, Var(£) = a^,
cov(e-j£j) = 0 is given by

15



V = 1 1 1 . . 1

12 2 2

12 3 3

1 2 3 . . n

If one transforms to variables where

^1 = ^1

X3 = y3 -
y2

= y2 - ^1 ^2

= ^3 ^2 ^3

X ~ y - y
n •'n n-1

= ^n - ^-1 + e

The expected values and variances become

E(X) =

^n-^n-1

V(X) = 0

0 0

In matrix form X = Ty where T =
1 0 0 . . 0 0

-1 1 0 0 0

0 -1 1 0 0

0 0 0 -1 1

. 0

0

16



and if one computes Var(Ty) = TVT', one gets

Var{Ty) = 10 0.. Ill

110 12 2 2

0-11 12 3 3

1 -1 0

0 1 -1

0 0 1

17
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APPENDIX : FORMULAS FROM STATISTICS

1 . Background and Notation

(a) Expected Value

The expected value, y, of a random variable, y, will be written

E(y) = y

The mean y may represent a linear function of some basic
parameters 6], 32j . . . 6|< with known coefficients

XT, X2, . . .,xk

E(y) = y = xi3l + y^2^2 + • • • + \^)^

The expected value of n observed values y] , y^* •

then be written

ECy^) = x^^3i + ^^2^2 + • • • + x^i^e,^ (1.1)

E(y2) = X2^3i + ^^ih • • • + Wk

^(^n^ = ^nl^l ' \zh ^ • •
•

This may be written in matrix notation as

'6

E(y2)

•

E(y )
•'n

E(y)

^11 ^12 • • • ^Ik

^21 ^22 • • • ^2k
3.

(1.1-M)

nl n2 nk

= X3

where the vectors y and 3 and the matrix, X, are easily
identified.
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(b) Variance , Covariance

The variance, a?, of a random variable, y^. , is defined as

O] = E{(yi - Pi)'}
= E(y.^) - 2y.E(y.) + = E(yp - (1.2)

and the covariance a., of the variables y. and y. by

(1.3)

(1.4)

a.j = E{(y. - y.)(y. - y.)} = E(y.y.) - y.y.

The variance of cy where c is some constant is

Var (cy) = E{(cy - cy)^} = c^a^

The variance of a sum of two variables

Var(y^ + y^) = E{[y^ + - (y^ + y^)]^ = E{[(y^ - ) + (y2 - Mz)]^)

= E(y^ - y^)2 + E(y2 - y2)' + 2E{(y^ - y^)(y2 - y2)}

= + a| + 2a^2 (1-5)

which we may write as

'a] + a^2" = [1 1] 0^2

_^12 '2_ .^12 ^2
_
C]

(1.5-M)

For independent random variables a.. = 0 and

Var(Ey.) = Ea^ (1.6)

EXAMPLE:

Var(ay^ + by2 + cy3) = E{[(ay^ - ay^) + (by2 - by2) + (cy3 - cy3)]n

= a^a^ + b^a^ + c^a^ + 2aba^2 ^300^3 + 2bca23 ^^'''^

which may be written as

(1.7-M)[a b c]fa| 0-12 o-^^'

^12 ^2 ^23

13 23 "3 J
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(c) Linear Function of Random Variables

A linear function

L = a,y, + a^yj * . . . * a„y„

has expected value

E(L) = a^E(y^) + a^Ely^) + . . . + a^E(y^)

or in matrix notation

E(L) = (ai a2 . . . a^) E(y^) = a'u

E(y2)

LE(y^)J

The variance is given, by analogy with (1.7) by

V(L) = [a, a
1

"2 . a
n] ^1 ^12 • • • ^In

^21 ^2 • • • ^2n

^nl ^n2 • • • ^n

which reduces to the usual formula

,2^2V(Za.y.) = Ea?a?

(1.8)

(1.9)

(1.9-M)

(1.10-M)

(1.11)

if a. .
= 0.

For two linear functions L, and L^, the covariance term is

given by

^^h^^rh^ ' " ^n^v^n^^^^i^^r^i^ + + ^^{y^-u^n}

= a^b^E(y^-y^)2 + a2b2E(y2-y2)^ + . . . + a^b^E(y^-u^)2

+ (a^b2 + a2b^)E(y^-y^)(y2-y2) + (a^b3 + a3b^ )E(y^-y^ ) (y3-y3)

+ (a2b3+a3b2)E(y2-y2)(y3-y3) + . . .
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This reduces to the usual formulas:

then Cov (L-i, Lg) = Za-b-a?

then Cov (L^ , = a^Ea.b^.

If a. . = 0
(1.12)

If a. = a

For the case of L-j =
a-iy-j

+ ^2^2 '3^3

covariance can be written:

(a^ 32 33) b^a^ + b2ai2 + Vl3

^2*^2 ^ '^1^12
^ ^3^23

^3^3 ^ ^^1^13
^ 4^23

^1 ^12 ^13

^12 ^2 ^23

^13 ^23 ^3

(1.12-M)

giving the general formula for the variance and covariance of two linear

functions

an dir\ • . . a
I c n

^ ^2 • • • ^

^12 • • • ^In

2 02 • • • (72n

a„ ... a
n 2n n

^1 h

^2 ^2

a b
n n

(1.13-M)

or in general for p such function, i.e., for a pxn matrix A

Var(AY) = AVA'

(d) Quadratic Forms in Random Variables

We have from (1.2)

E(y2) = + y2

(1.14-M)

(1.15)

We wish to extend this to include the case of a more general
quadratic expression in the y's, consider for example

E[(ay^ + by2)'] = Ea^y^ + Eb2y2 + 2abE(y^y2)

= a^a^ + a^y^ + b^a^ + b^y| + 2abuiy2 + 2abai2
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which may be displayed as a matrix product as follows;

"a^ ab~ W "a^ ab"

ab b\ ab b^

+ [a b]
^1 ^12"

^0^2 ^2 J

This example illustrates the general formula:

E[(a^y^ + . . + a^y^)'] = E^[y^ y2 . . y^]

=
[yi

. . y,]

'In

. a
In

^1 ^1^2 a^a
1 n

a2ai 82 • • ^2^n

^n^l ^n^2 • • ^n

+ [a^ . . aj raf 0^2 • • ^In

^In ^2n • %

or

where A =
^1^2

^1^2 ^2

E{y'Ay} = y'Ay + a'Va

and V = o\ a^2

^12 ^2

{1.16-M)

The last term can be replaced by the trace of AV so that we have

E(Y'AY) = y'Ay + Trace(AV) (1.17-M)

For an excellent treatment of these statistical topics one should
consult Zelen C5]

.
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2. The Gauss Theorem on Least Squares (Independent, Equal Variance,
Full Rank)

Let the n observations
yi,y2>.

. .»y^ have expected values

E(y,) = x,,S, + x,2e2 . . . x,^8|^

E{y2) = X2,B, + X2262 . . . ^2kh

(2.1)

and be statistically independent with common variance,
conditions can be expressed in matrix form as follows:

These two

E(y) = E y^ = X
11 ^12

^2 ^21 ^22

^n ^nl ^n2

^Ik

^2k

^nk

= X3

(2.1-M)

v(y) = 0' 0

0 o'

0 0

= an

The Gauss theorem states that the minimum variance unbiased linear
estimator of any linear function, L, of the parameters, 3, 3^ . . . 3. ,

say ' ^ K

L = a^3^ + a232 + .
• ^^k

is given by substituting the values of 3^ which minimize
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Q = Z[y. - (x.^Bi + . . x.^3k)] (2.2)

considered as a function of the 3-. These values, 3-, , 3^ . .

the solutions to the k equations ,^cal led the nomat iqaazioiu.

^^il^l
+ 1.x,tX,o3o + . . + ^x.^x.|^3,^ =

'iri2^2
Zx . ,y

.

1 r 1

3|^
are

Zx.„x,,3i + Zx?^3
'i2"iri i2^2 ^^i2^•k\

Sx .

•

or in matrix form

(X'X)3 = X'y

The solution to these equations can be written as

3 = (X'X)"^X'y

^^•kyi

(2.3)

(2.3-M)

(2.4-M)

because X was assumed to be of rank k. The matrix (X'X)"^ is the

A^nvzA^t o{i the. mcut/vix noKmaJi iiqucutioiU and plays an important role
in least squares analysis. Let its elements be denoted by c. so that

' v^-l -(X'X)
^11 • • • ^Ik

^21 ^22 . c
2k

(2.5-M)

^kl ^k2 • • • ^kk

The standard deviation, a, is estimated from the deviations d^

,

where

^- = ^i - (^-1^1 ' 'izh ^ ' ^ik^k)
(2.6)
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by the quantity, s,

s = /5^i (2.7)

and is said to have n-k dagxzd^ o{, {^fizzdom.

The standard deviation of the values for the coefficients 3^ are
given by

s.d.(3^.) = a/c.. (2.8)

and for a linear function L = 3,31 + a^^go • • • a^Bi, is [see equation
(1.10-M)] ' ' ^ ^ ^ ^

(2.9-M)
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3 . The Gauss Theorem on Least Squares (Independent, Equal Variance,
With Restraints)

If the parameters, 3^-, are required to satisfy the m linear equations

^m ml I m2 2 mk k m

or in matrix form

B'3 = K (3.1-M)

then using the method of Lagrangian multipliers, it turns out that the

minimum variance unbiased linear estimators are given by minimizing

F = Q + 2A^ (i/;^ - K^) + 2X^{ilj^ - K^) + . . + 2Xj^l^^ - (3.2)

considered as ^ function of the 3's and A's. (2X-j is chosen rather
than just X-\ so that in setting 9F/33i = 0, a common factor of 2 can be

divided out.

)

This leads to the normal equations

(3.3)
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or in matrix form

X'X B
"3"

X'y

B' 0 X K

(3.3-M)

and the solution is given by

6
'

X ' X B~
-1

'Vy

A B' 0 K

(3.4-M)

If X'X was already of full rank, then B must be of rank m for the

inverse to exist. If X'X is of rank (k-m) and B' consists of m rows,
then the indicated inverse will exist if B is orthogonal to X'X, i.e.

that (X'X)B = 0,and B is of rank m. Also if B is a combination of
such an orthogonal set of restraints, denoted by H, and the vectors of
X'X, then the inverse exists if the mxm matrix B'H is of rank m, i.e.,
the determinant |B'H

|
0.

EXAMPLE : If the differences A-B, B-C, C-D, D-E, E-A are measured, then
the 5 measurements yi,y2» ys, y4,y5 (assumed independent with equal
variance) can be represented as

E(y) = A-B

B-C

-A

"1 -1 0 0

0 1 -1 0

D 0 0 1 -1

D-E 0 0 0 1

+E
-1 0 0 0

= X3

X'X 2 -1 0 0 -1

-1 2 -1 0 0

0 -1 2 -1 0

0 0 -1 2 -1

-1 0 0 -1 2

rank of X'X is 4

The restraint A+B+C+D+E =[11111] "a" = H' A

B B

C C

D D

E

- -

E

= K
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is orthogonal to X'X because H'(X'X) =(11111) (X'X) = [00000].
If the given restraint were A + B = Kg, then B' = (1 1 0 0 0) and |B'H| =

2 / 0 so that the restraint is sufficient to produce a solution.

The standard deviation estimate is changed from that given in

formula (2.7) to become

s =
/^_|^^^ degrees of freedom = (n-k+m) (3.5)

where m is the number of restraints.

Formulas (2.8) and (2.9) still apply for the standard deviation of the

parameter values and of linear combinations of them.
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4. The Gauss Theorem on Least Squares (General Case)

If the observed values y\ yz • - ' '^^^^ variances and

covariances a-, so that
' J

Var (y) =
'1

^12 ^2

12

2

'In

'2n

^In ^2n

= V

and the parameters are subject to the m restraints

:
r b„6, ..... b,^B, - K,

or in matrix form

(4.1-M)

(4.2)

B'3 = K

Then the least squares estimators for 6 are given by

3 X'V^X B
-1

X B' 0 K

(4.2-M)

where as before X' = [A-] X2 . . . X^] is a vector of Lagrangian multi'
pliers entering into the minimization process.

For a discussion of this general case, the reader is referred to the
Goldman-Zelen article [4].
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